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A B S T R A C T

The development of successful social-cognitive abilities requires one to track, accumulate, and integrate knowl-
edge of other people’s mental states across time. Regions of the brain differ in their temporal scale (i.e., a cortical
temporal hierarchy) and those receptive to long temporal windows may facilitate social-cognitive abilities;
however, the cortical development of long timescale processing remains to be investigated. The current study
utilized naturalistic viewing to examine cortical development of long timescale processing and its relation to
social-cognitive abilities in middle childhood – a time of expanding social spheres and increasing social-cognitive
abilities. We found that, compared to adults, children exhibited reduced low-frequency power in the temporo-
parietal junction (TPJ) and reduced specialization for long timescale processing within the TPJ and other re-
gions broadly implicated in the default mode network and higher-order visual processing. Further, specialization
for long timescales within the right dorsal medial prefrontal cortex became more ‘adult-like’ as a function of
children’s comprehension of character mental states. These results suggest that cortical temporal hierarchy in
middle childhood is immature and may be important for an accurate representation of complex naturalistic social
stimuli during this age.
1. Introduction

The cerebral cortex is organized along a hierarchy of multiple pro-
cessing timescales (Hasson et al., 2008; Kiebel et al., 2008; Lerner et al.,
2011; Honey et al., 2012). For example, primary sensory areas process
transient incoming sensory information (i.e., short timescales) whereas
regions higher in the temporal hierarchy reflect the integration and in-
fluence of information over multiple minutes or longer (i.e., long time-
scales) (Hasson et al., 2008). Using functional magnetic resonance
imaging (fMRI), one method that can index how the brain processes long
timescales is through examining synchronous neural activity between
participants who have passively-viewed a naturalistic stimulus that has
been scrambled at various resolutions (e.g., intact, coarse scrambled, fine
scramble) (Hasson et al., 2008). While the functional role of cortical
temporal hierarchy is beginning to emerge, no work has leveraged
temporally manipulated naturalistic stimuli to explore the development
of long timescale processing and its role in the development of
higher-order social-cognition in children.

Previous work using naturalistic stimuli in adults suggests that
cortical timescale processing reflects a process memory in which past
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information within a neural circuit affects the processing of newly
arriving information (Hasson et al., 2015). Within this framework all
neural circuits maintain the ability to accumulate information over time,
though the specific time constant will vary depending on a given region’s
location in the overall hierarchy (Lerner et al., 2011; Honey et al., 2012;
Stephens et al., 2013; Hasson et al., 2015). The length of time that prior
information can affect the processing of incoming information – known
as temporal receptive window (TRW) (Hasson et al., 2008) – can be used
to index a given region’s location in the temporal hierarchy. While the
shortest cortical TRWs are seen in primary sensory areas, regions that
display the longest TRWs are in higher-order association cortices and
spatially overlap with the default mode network (DMN) (Hasson et al.,
2010) – a network associated with internally directed thought, social
cognition, and memory (Raichle et al., 2001; Buckner et al., 2008). In
addition, regions of the DMN exhibit greater low-frequency power at rest
and during natural listening relative to regions implicated in primary
sensory processing, suggesting that regions within the DMN play a role in
long intrinsic and extrinsic neural dynamics (Zou et al., 2008; Stephens
et al., 2013). Further, activity within long timescale regions predicts
scene recall during naturalistic viewing (Chen et al. 2016b, Chen et al.,
Park, MD, 20742, USA.
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2017b; Simony et al., 2016), suggesting that these regions integrate in-
formation over multiple minutes and are important for following the long
timescales of a story’s unfolding plot.

In addition to general memory processing, long timescales may be
specifically important for real-world social-cognitive processing given
that understanding the thoughts and intentions of other people requires
the integration of information across multiple timescales (Zaki and
Ochsner, 2009; Hasson and Honey, 2012; Koster-Hale and Saxe, 2013).
For example, to accurately assess what a social partner may be thinking
during a conversation, one must integrate transient changes in their
partner’s facial expression, word use, and prosody with the context of the
current interaction, one’s previous knowledge of their partner’s person-
ality, and one’s entire history of social norms and mores. In addition,
while previous cortical temporal hierarchy work has suggested an over-
lap between the DMN and long timescale regions (Hasson et al., 2010;
Chen et al., 2016b), other researchers have noted the overlap between
the DMN and regions implicated in social-cognitive processing (Spreng
et al., 2009; Mars et al., 2012; Li et al., 2014). This involvement of DMN
regions associated with long timescales may be due to the fact that
social-cognitive processing relies on integration across long time win-
dows. Disruption in a narrative for example will lead to difficulties in
tracking a character’s mental state. Indeed, most prior work investigating
long timescales has used movies or narratives rich with social content.
However, the role of long timescale processing in higher-order social--
cognitive processing remains to be directly investigated.

Middle childhood (between 6- and 12-years old) is an ideal time to
investigate the aforementioned relationship between long timescales and
social cognition. Within this age window, social-cognitive abilities in-
crease (Apperly et al., 2011; Rice et al., 2016) and brain regions sup-
porting social-cognition become more specialized during tasks (Saxe
et al., 2009; Gweon et al., 2012; Warnell et al., 2017) and at rest (Fair
et al., 2009; Supekar et al., 2010; de Bie et al., 2012; Muetzel et al., 2016).
For example, the temporoparietal junction (TPJ) exhibits selectivity for
mental state representation (Saxe and Kanwisher, 2003), which increases
with age throughout middle childhood (Saxe et al., 2009; Gweon et al.,
2012). Further, children’s social-cognitive abilities predict the selectivity
of the right TPJ for mental state representation (Gweon et al., 2012). At
rest, the DMN exhibits greater within- (Supekar et al., 2010; de Bie et al.,
2012; Muetzel et al., 2016) and between-network connectivity (Fair
et al., 2009) with age. Thus, regions of the social brain (including the
DMN) are functionally immature during middle childhood. One possi-
bility is that maturation of long timescale processing within these regions
is a domain-general mechanism supporting advances in social-cognitive
development; however, no study has investigated long timescale pro-
cessing in middle childhood.

Much of the previous developmental work is ill-equipped to address
questions of long timescale processing due to the use of non-naturalistic
stimuli that focuses on either discrete events (i.e., task-based) or no task
(i.e., resting state). However, the use of naturalistic stimuli with fMRI to
answer developmental questions is growing (Cantlon and Li, 2013;
Emerson et al., 2015; Moraczewski et al., 2018; Richardson, 2018;
Richardson et al., 2018) due to its similarity to real-world processing
(Zaki and Ochsner, 2009; Hasson and Honey, 2012) while minimizing
task demands and head motion (Vanderwal et al. 2015, 2018). In a
previous naturalistic viewing study, we demonstrated that adults
exhibited greater neural synchrony in regions topographically similar to
the DMN compared to 4- to 6-year old children and that responses in the
left TPJ within the child group became more ‘adult-like’ as a function of
age (Moraczewski et al., 2018). Other recent work suggests that func-
tional maturity within the theory of mind network, as well as the pain
network, is positively related to anticorrelation between the two net-
works (Richardson, 2018; Richardson et al., 2018). Taken together, this
work demonstrates that regions associated with the DMN are also func-
tionally immature during naturalistic viewing; however, no work has
specifically investigated timescale processing and its relation to cognition
in childhood.
2

The current study examines developmental differences in long time-
scale processing and its relationship to social-cognitive abilities in middle
childhood. Functional MRI data were collected on a cross-sectional
sample of children and adults while watching two episodes of a chil-
dren’s television show. To establish brain regions implicated in long
timescale processing, each participant viewed one episode intact and one
episode that was scrambled to induce temporal inconsistency. We first
examined low-frequency power during the intact episode through sam-
pling regions at different locations within the temporal hierarchy (Ste-
phens et al., 2013). Further, to ground our analysis within the
social-cognitive literature, we conducted our analysis within regions
implicated in social-cognitive processing (e.g., dmPFC, TPJ, precuneus)
(Schurz et al., 2014). Next, we utilized inter-subject correlation (ISC)
analysis to examine differences in neural synchrony between the child
and adult groups, as well as child-to-adult ISC as a measure of individual
differences in the child group (also known as neural maturity (Cantlon
and Li, 2013)). To examine ISC at the group level, we used novel crossed
random effects analysis, which has been previously shown to control the
false positive rate more adequately than previous group ISC methods
(Chen et al., 2017a). In addition, to index social-cognitive processing,
after the scanning session we assessed participants’ comprehension of
character mental states (mental comprehension) and events that required
general memory of the episode but did not require knowledge of char-
acter mental states (non-mental comprehension).

We hypothesized that regions previously implicated in long timescale
processing (e.g., those topographically similar to the DMN) would show
increased low-frequency power compared to a control region in the
primary auditory cortex. Further, we hypothesized that adults would
exhibit greater low-frequency power relative to the child group. We
hypothesized that regions of the DMN would show greater neural syn-
chrony during long timescale processing (i.e. the intact episode) in the
adult group and that, due to cognitive and neural immaturity, children
would display reduced specialization for long timescales in these regions.
We also hypothesized that long timescales would be more important for
mental state comprehension compared to non-mental comprehension.
Finally, we hypothesized that child-to-adult ISC in long timescale regions
would be related to child age and comprehension. The current study is
the first to map age-related differences in neural dynamics and long
timescale processing, as well as relate long timescale processing to in-
dividual differences in higher-order social-cognitive abilities.

2. Materials and methods

2.1. Participants

A cross-sectional sample of fifty-two children (30 female, 9.20 �
1.95 years old, age range: 6.08–13.08) and twenty-seven adults (16
female, 22.76 � 2.26 years old, age range: 19.25–26.75) were
recruited to participate in the study. All participants were screened to
ensure that they were native English speakers and had normal or
corrected-to-normal vision. In addition, inclusion criteria required no
history of neurological or psychological disorders, and no first-degree
relatives with autism or schizophrenia based on self-report or parent-
report for children. Families were recruited through a university
database where parents opt-in to be contacted for research studies and
received financial compensation as well as a toy for their time. Adult
participants were recruited from the local undergraduate student body
and received either course credit or financial compensation. After
exclusion based on failure to complete all four functional MRI runs (4
children), failure to pay attention to the stimuli (e.g., eyes closed for
an extended period of time) (1 adult), hardware malfunction (1 child
and 1 adult), previous familiarity with the stimuli (1 child), and
excessive motion (15 children and 1 adult, see Methods), the final
sample consisted of thirty-one children (19 female, 9.83 � 2.02 years
old, age range: 6.42–13.08) and twenty-four adults (14 female, 22.08
� 2.29 years old, age range: 19.25–26.75). All protocols were
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approved by the University of Maryland Institutional Review Board
and implemented accordingly.

2.2. Stimuli

Functional data were acquired while participants viewed two epi-
sodes from the first season of the Australian ‘mockumentary’-style chil-
dren’s television show Little Lunch (Butler and Hope, 2015). This show
was chosen because 1) based on piloting, it was unlikely that children in
the population from which we recruit would have familiarity with the
show, 2) the show’s characters are of similar age to the population of
interest (i.e., middle childhood), and 3) the mockumentary-style enables
viewers to receive the mental state information from multiple characters
regarding a single plot event. The Monkey Bars (MB) episode consisted of
two girls arguing over whose turn it is to play on the monkey bars and
The Body Bus (BB) episode consisted of a girl who thinks she has head
lice and is worried that a visiting vehicle may be a doctor who is doing
checkups. Prior to the scan session all participants were asked if they had
previous experience with the show. Only one child participant was
familiar and subsequently excluded from the study (see Participants).
The beginning and end of each episode was cropped to the same length
(11 minutes and 12 seconds). The length of time for the episodes was
chosen so that each episode could be cropped to be the same length while
preserving all meaningful plot content.

Each participant viewed both episodes: one episode intact and the
other episode scrambled according to the follow procedure. To generate
the scrambled version of each episode, we determined timestamps that
corresponded to naturally occurring camera cuts or, if a scene was longer
than 20 seconds, a naturally occurring break in the dialog. We chose a
maximum scene length of 20 seconds to maintain consistency with pre-
vious work that investigates mid-level timescale processing (Honey et al.,
2012; Chen et al., 2016b). In addition, no sentences were split to ensure
that the full dialog was preserved in both the intact and scrambled ver-
sions of each episode. No statistical difference in scene duration between
the two episodes was detected (t(168)¼ 0.43, p¼ 0.67; TheMonkey Bars
– scene duration: 7.98 � 4.06 s, range: 1.79–19.82 s; The Body Bus –

scene duration 7.71 � 4.02 s, range: 1.64–19.27 s). Once the scene cuts
were determined, we pseudo-randomized the scene order to ensure that
each scrambled episode was as disjunct as possible. In addition, in order
to control for lower-level visual and/or auditory effects of cutting and
reassembling the scrambled video, we cut and reassembled the intact
version of each episode using the same procedure with a chronological
rather than a random scene order. Finally, we divided each of the four
episodes (i.e., MB intact and scrambled; BB intact and scrambled) in half
(e.g., MB intact 1st half and 2nd half) in order to distribute each episode
across two functional runs, which yielded eight stimulus files. Dividing
each clip over two shorter functional runs helped to maximize participant
compliance. The video files were edited using the Moviepy python
module (https://zulko.github.io/moviepy/). All participants saw each of
the episodes but one was presented intact and one scrambled (and this
ordering was counterbalanced across participants).

In the scanner, participants passively-viewed an intact episode and
scrambled episode, which were each divided into two runs for four func-
tional runs total per participant: intact run 1 (1st half of intact episode),
intact run 2 (2nd half of intact episode), scrambled run 1 (1st half of
scrambled episode), and scrambled run 2 (2nd half of scrambled episode)).
The specific scrambled episode (i.e., MB or BB) and the sequence of pre-
sentation for the intact and scrambled episodes (i.e., intact then scrambled
or scrambled then intact) were counterbalanced. However, participants
always viewed the 2nd half of each episode (scrambled or intact) in the run
immediately following the presentation of the first half of a given episode.
Order A consisted of BB (“Body Bus”) intact and MB (“Monkey Bars”)
scrambled whereas order B consisted of MB intact and BB scrambled.
Sequence one consisted of intact then scrambled presentation whereas
sequence two consisted of scrambled then intact presentation. Our final
sample size consisted of 11 adults and 15 children who viewed order A, 13
3

adults and 16 children who viewed order B, 12 adults and 15 children who
viewed sequence one, and 12 adults and 16 children who viewed sequence
two. Child age did not differ between order A and B (t(29) ¼ 0.73, p ¼
0.47) or sequence one and two (t(29) ¼ 0.39, p ¼ 0.70). Each video was
preceded with 10 s of fixation on a black screen and followed with 20 s of
post-stimulus fixation. Videos were presented using Psychopy presentation
software (version 1.83.04) (Peirce, 2007), projected to a screen, and
viewed though a mirror mounted to the head coil. Sound was presented
using Sensimetrics S14 insert earphones.

2.3. Episode comprehension

Immediately after the scan, participants were given an assessment to
index episode comprehension that required the knowledge of character
mental states, as well as comprehension that did not require mental state
knowledge. Sixteen comprehension questions – eight mental and eight
non-mental – were created for each episode (i.e., MB and BB episodes).
To create the questions, we ran a behavioral pilot with 36 questions per
episode (18 mental and non-mental). The final 16 comprehension
questions were then chosen based on those that elicited the greatest in-
dividual response variability (see Appendix 1 in the Supplementary In-
formation for final comprehension questions). Episode questions were
presented in the same order in which participants viewed the episodes in
the scanner. Prior to the questions, participants viewed a series of sixteen
screen shots for each episode in order to disambiguate the specific
episode to which the questions corresponded. Importantly, none of the
screen shots contained the answers to any of the subsequent compre-
hension questions. Each screen shot appeared on the screen for 3 seconds
followed by a 0.5 second fixation cross. Immediately after the screen
shots, free-response questions appeared in text on the bottom of the
screen and the researcher read the question aloud. Participants were also
provided with images of the six main characters and their names. The
comprehension assessment was presented on a Macbook Pro using Psy-
chopy (version 1.83.04) (Peirce, 2007).

Successful performance on the mental questions required the partic-
ipant to understand the beliefs, desires, and/or intentions of one or more
of the characters (e.g., “Why did Debra Jo ask the kids to calculate their
own change?“), whereas successful performance on the non-mental
questions did not (e.g., “What sport were Atticus and Rory playing?“).
Answers to each question were scored as 1 for correct, 0.5 for partly
correct, and 0 for incorrect or “I don’t know” (see Appendix 1 in the
Supplementary Information for the scoring scheme used for each ques-
tion). These scores were then converted to percent correct for the mental
and non-mental questions separately yielding four comprehension scores
per participant (intact/scrambled x mental/non-mental). We used a
linear mixed-effects model to estimate the effects of condition (intact/
scrambled), question type (mental/non-mental), condition by type
interaction, and age on the child participant’s comprehension scores,
while controlling for episode (i.e., MB or BB). In addition, to account for
repeated measures, a random effect of participant was added. The anal-
ysis of comprehension in the adult sample was analogous to the child
comprehension except that we removed the effect of participant age as a
predictor. After we estimated the effects of condition, question type,
condition by type interaction, and age (in the case of the child compre-
hension), the confidence intervals for the uncertainty of the estimates
were examined using a simulation procedure based on the effect mean
and standard error (Gelman and Hill, 2007). Our model results are re-
ported as the fixed effect estimates and the confidence intervals sur-
rounding their uncertainty. Finally, we also conducted pairwise post-hoc
t-tests on the factors of condition and question type and corrected for
multiple comparisons using a Bonferroni correction.

2.4. Image acquisition

Structural and functional MRI images were acquired on a Siemens 3T
MAGNETOM Trio scanner using a 32-channel head coil. Each session

https://zulko.github.io/moviepy/
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began with four functional runs of echo planar images (EPI) (intact run 1,
intact run 2, scrambled run 1, and scrambled run 2) followed by a high-
resolution structural T1-weighted anatomical scan. For each functional
run, 293 volumes were acquired using a multiband slice sequence, which
consisted of 66 slices per volume, a voxel size of 2 � 2 � 2.2 mm, TR of
1250 msec, TE of 39.4 msec, and 90� flip angle. The first four functional
volumes of each run were automatically dropped to allow for magneti-
zation equalization. The structural T1-weighted MPRAGE image con-
sisted of 192 contiguous sagittal slices, with a voxel size of 0.9 mm
isotropic, TR of 1900 msec, TE of 2.32 msec, inversion time of 900 msec,
and a flip angle of 9�.

2.5. Image preprocessing

Structural images were processed using Freesurfer’s (version 5.1.0)
automated segmentation and cortical surface reconstruction algorithm
(recon-all) (Fischl, 2012). This algorithm uses voxel intensity to assign
each voxel to a tissue type (e.g., cortical gray matter, white matter, lateral
ventricle). The white matter and pial surfaces are then used to construct a
two-dimensional surface mesh representation of the participant’s brain.
Two independent trained research assistants then checked the automated
algorithm for accuracy. If necessary, edits were made to the cortical and
white matter surfaces and the algorithm was repeated.

We utilized a surface-based analysis to preprocess the functional
images using the AFNI (Cox, 1996) and SUMA (Saad and Reynolds, 2012)
software packages (Version 17.2.13). We chose a surface-based pro-
cessing pipeline to minimize possible bias in normalizing children and
adult brains to a common 3D stereotaxic space (Jo et al., 2007). Pre-
processing steps included slice-time correction followed by volume
co-registration to ensure that each participant’s functional, structural,
and surface datasets were registered within the participant’s original
space. The white matter and pial surfaces created from Freesurfer were
then used as a mask to project the functional data to a standardized
surface mesh (36,002 nodes per hemisphere) using a mean-mapping
function. We then normalized the BOLD signal to a mean of 100
through scaling the time series by the average node-wise intensity. The
data were then entered into a nuisance regression, which included terms
for linear, quadratic, and cubic low-frequency drift, de-meaned motion
parameters and their derivatives, and average signal from tissues of no
interest (i.e., white matter and lateral ventricle, defined from Freesurfer).
In addition, we censored time points where the frame-to-frame
displacement was greater than 0.5 mm in any translation or rotation
(Power et al., 2014). The residuals from the nuisance regression were
smoothed using a 5 mm FWHM Gaussian kernel on the surface. Finally,
we concatenated the time series from each half episode (e.g., intact run 1
and intact run 2) into one time series per episode. To do this we dropped
the first 13 and the last 10 time points within each run (i.e., first 16.25
and last 12.5 seconds, respectively) and concatenated runs one and two
of a given episode. The first thirteen time points were dropped to remove
the pre-episode fixation and onset of the stimulus, while the last 12.5 s
accounts for the tail end of the post-episode fixation. We maintain the
first 7.5 post-episode fixation seconds to account for hemodynamic lag.
Once the temporally cropped data were concatenated, all participants
had two runs of preprocessed BOLD time series: one corresponding to the
intact and one to the scrambled episodes.

To ensure that our results cannot be attributed to head motion, we
then used the motion parameters generated during volume co-
registration to further exclude participants. Since our planned analysis
required each participant to contribute all four functional runs, our
criteria for participant exclusion was met if any of the four functional
runs exceeded 10% of time points with greater than 0.5 mm frame-wise
displacement (FD). This motion exclusion yielded 38 participants in the
child group and 24 in the adult group. However, after our a priori motion
exclusion, we detected a statistically significant difference in mean FD
between the Child and Adult groups (t(60) ¼ 2.69, p < 0.01), such that
the Child group exhibited greater motion than the Adult group. Thus, we
4

then quantified outliers in mean FD using a median absolute deviation
greater than 2 (Leys et al., 2013). This analysis yielded seven motion
outliers in the Child group (two 6-year olds, four 7-year olds, and one
9-year old). After the exclusion of the motion outliers, our final sample
consisted of 31 participants in the Child group and 24 participants in the
Adult group, with no statistical differences in mean FD detected between
group (βgroup ¼ 0.014, 95% CI [-0.007, 0.034], t(62) ¼ 1.30, p ¼ 0.20),
condition (βcondition ¼ 0.004, 95% CI [-0.004, 0.013], t(53) ¼ 0.99, p ¼
0.33), or a group by condition interaction (βinteraction ¼ 0.005, 95% CI
[-0.006, 0.017], t(53)¼ 0.93, p¼ 0.36). However, in the Child group, we
did observe a negative and statistically significant effect of age on mean
FD. Thus, all of our analyses that examine the age-related differences
include child head motion as a covariate (see Supplementary Information
for group- and age-related analysis of head motion). Further, to ensure
that our observed effects of age are not due to head motion, we also
replicate all subsequent analyses that examines group differences and
individual differences as a function of age within a subset of the child
group where age and mean FD are not statistically related (see Supple-
mentary Information).

2.6. Regions of interest

For both our low-frequency power and inter-subject correlation an-
alyses, we extracted values from four regions of interest (ROIs) (Fig. 1a).
Three ROIs (temporoparietal junction (TPJ), precuneus, and dorsal
medial prefrontal cortex (dmPFC)) were chosen to sample regions pre-
viously implicated in social cognition, the DMN, and long timescale
processing. These regions were defined using coordinates from a meta-
analysis of theory of mind tasks (Schurz et al., 2014). Bilateral ROIs
were defined for the TPJ (MNI coordinates: �53, �59, 20 and 56, -56,
18), whereas one region was defined for each the dmPFC (MNI: �1 54
24) and precuneus (MNI: 4 -52 30). In addition, to examine the specificity
of our effects, we chose bilateral control ROIs in the primary auditory
cortex to represent a region that we did not predict to be involved in
social cognition or long timescale processing (MNI: �50, �24, 3 and 54,
-24, 0). Auditory regions were defined using the meta-analytic tool
Neurosynth (Yarkoni et al., 2011) using the peak coordinates from the
map associated with the search term ‘sound’. Data from the bilateral
regions (i.e., TPJ and auditory) were averaged across both hemispheres
for all subsequent ROI analysis and visualization (see Supplementary
Information for analysis of separated TPJ hemisphere regions).

2.7. Low-frequency power analysis

To characterize the neural dynamics of long timescale processing, we
examined the proportion of low-frequency power within a priori ROIs
while participants viewed the intact episode. Similar to the methods used
by Stephens and colleagues, for each participant we began by removing
the global mean from each node’s time series (Stephens et al., 2013). We
then estimated the power spectrum for each node on the surface using the
Welch method with a window of 100 seconds and 50% overlap. The
node-wise power spectra were then averaged across all participants
within the adult and child groups and the mean spectra were extracted
from each ROI for further analysis. Using the overall frequency range of
0.01 Hz–0.33 Hz, we quantified the proportion of low-frequency power
within the 0.01–0.04 Hz band. Finally, we used a mean bootstrap pro-
cedure that randomly sampled participants within-group to examine the
confidence intervals surrounding the mean power spectrum density
(Stephens et al., 2013).

2.8. Inter-subject correlation

To examine neural synchrony within and between conditions and
groups, we constructed pairwise inter-subject correlations (ISCs) for each
surface node. Here we only calculated meaningful ISCs, that is, correla-
tions between time series from participants who viewed the same episode



Fig. 1. Low-frequency neural dynamics. (a) Regions of interest and power spectrum density (PSD) for the adult (b) and child (c) groups. The PSD ribbons for each
region depict the mean � standard error. The black line denotes the 0.04 Hz cut-off used in the low-frequency statistical analysis. The boxplots denote the proportion
of low-frequency power for each region.
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of the same condition. Since roughly half of the sample saw the BB
episode scrambled whereas the other half viewed the same episode
intact, ISCs were only calculated within participants who viewed the
same episode order (e.g., Order A or B, see Participants). The ISC for each
pair of participants within the same order was calculated as the Fischer’s
z-transformed Pearson’s product-moment correlation between the time
series of each pair of participants. Node-wise correlations were calculated
using AFNI’s 3dTcorrelate function and normalized using 3dcalc. Pairwise
ISCs were calculated (as opposed to a leave-one-out average group pro-
cedure (Lerner et al., 2011)) in order to 1) utilize a crossed random ef-
fects analysis (Chen et al., 2017a) and 2) examine individual differences
in child-to-adult ISCs (Cantlon and Li, 2013; Moraczewski et al., 2018).

2.8.1. Statistical analysis of inter-subject correlations
Parametric statistical modeling of ISC data necessarily violates the

assumption of observation independence, such that each participant’s
data is represented N - 1 times in the model matrix. Thus, our statistical
analysis utilized fully crossed random effects in order to accurately es-
timate the shared variance between each effect (Chen et al., 2017a). This
method has been shown to more adequately control the false discovery
rate compared to previous non-parametric methods of within- and
between-group ISC statistical analysis (Chen et al. 2016a, 2017a). For
each episode and condition, we constructed a symmetric pairwise ISC
matrix for each node on the surface where each row and column corre-
sponded to one participant. Excluding the diagonal (i.e., self-self corre-
lations), all pairwise ISCs were entered into the model (i.e., both bottom
and top triangles of the matrix). Such symmetrical redundancy allows for
an accurate estimate of the shared variance of each effect (Chen et al.,
2017a). In addition to fixed effects of interest, a random effect was added
for each participant contributing to the corresponding outcome ISC value.
Thus, we predicted each outcome ISC from a combination of fixed effects
of interest and two random effects that correspond to each of the two
participants contributing time series data to the outcome correlation.
Similar to previous work (Hasson et al., 2008; Lerner et al., 2011; Chen
et al., 2016b), we examined regions implicated in long timescale
5

processing by first calculating significant within-condition ISCs (i.e.,
Intact and Scrambled) for each group (i.e., Child and Adult). Here our
effect of interest is the intercept (corresponding to the group mean ISC),
while controlling for a fixed effect of episode (since data from both ep-
isodes are represented within each condition) and fully crossed random
effects. Using this procedure, we calculated regions that show statistically
significant ISCs for each episode and condition, yielding four ISC maps:
adult intact, adult scrambled, child intact, and child scrambled. To
determine regions implicated in long timescale processing, we entered
the within-group ISC data for both conditions into another mixed-effect
model. Here the effect of interest was condition while controlling for
episode and crossed random effects. This analysis yielded one intact –
scrambled map for each group. To examine group differences in the
within-group intact – scrambled maps, we entered all ISC data into
another mixed-effect model. Here our effect of interest was a group �
condition interaction, while also controlling for episode and crossed
random effects. Finally, while we did not have a priori hypotheses
regarding the effect of episode content, we controlled for this effect in all
aforementioned analyses. See Supplementary Fig. 10 for content-specific
differences (MB versus BB) in long timescale specialization.

All whole-brain maps are presented using a node wise threshold of p
< 0.01 and a cluster extent of 112 mm2 to threshold the data and
maintain a FWE of p < 0.05. We calculated the cluster extent threshold
using a Monte Carlo simulation (1000 iterations) in which we generated
a volume of noise for each participant, projected it to the surface using a
mean mapping function, and calculated cluster sizes that could arise by
chance. Note that current cluster-based methods to control FWE have not
been evaluated using crossed random effect or ISC analysis. In addition,
we extracted ISCs from each of the four a priori ROIs (auditory, dmPFC,
precuneus, and TPJ) for further analysis. All whole-brain and ROI models
were built using the lmer () function in Rand analysis code is available at
the following repository: https://github.com/dmoracze/TRW. All sur-
face and volume-projected whole-brain statistical maps are available in
the following NeuroVault (Gorgolewski et al., 2015) collection:
https://neurovault.org/collections/6592/.

https://github.com/dmoracze/TRW
https://neurovault.org/collections/6592/
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2.8.2. Individual differences in child-to-adult inter-subject correlations
We next examined cortical regions in the Child group that become

more ‘adult-like’ as a function of individual differences in age and social-
cognitive comprehension. To index social-cognitive comprehension, we
calculated a composite score of mental/(mental þ non-mental) episode
comprehension to examine regions that show greater ISCs as a function of
mental state comprehension beyond general episode comprehension.
Rather than using within-group ISC (i.e., adult to adult or child to child
correlations), we used the child-to-adult ISCs (Moraczewski et al., 2018),
a metric also known as neural maturity (Cantlon and Li, 2013). For this
analysis, we predicted child-to-adult ISC as a function of the fixed effects
of a covariate (i.e., age and mental comprehension composite score),
condition, and covariate by condition interaction, while also controlling
for differences between episodes and crossed random effects. In addition,
for both child-to-adult ISC models we controlled for child head motion
and, for the mental state composite model, we also controlled for child
age. Since our questions revolved around long timescale processing, our
main effect of interest in the child-to-adult models was the covariate by
condition interaction, such that we hypothesized that age and mental
state comprehension would be more related to child-to-adult ISC in long
timescale regions within the Intact compared to the Scrambled episode.
All maps are presented using a node wise threshold of p < 0.01 and a
cluster extent of 112 mm2 to threshold the data and maintain a FWE of p
< 0.05.

3. Results

3.1. Children exhibit less low-frequency power in long timescale regions
compared to adults

We extracted the mean power spectrum density from the four a priori
ROIs (auditory, dmPFC, precuneus, and TPJ) and quantified the pro-
portion of low-frequency power (0.01–0.04 Hz) within each ROI.
Consistent with previous work (Stephens et al., 2013), we found a sta-
tistically significant difference in low-frequency power between the four
ROIs in the adult group (F(3,69) ¼ 25.56, p < 0.0001), ensuring that we
controlled for head motion (using mean FD) and accounting for four
within-participant repeated measures. Follow-up tests suggest that the
6

dmPFC, precuneus, and TPJ all exhibited greater low-frequency power
compared to our control auditory region (dmpfc: βregion ¼ 0.10, 95% CI
[0.08, 0.13], t(23) ¼ 8.83, p < 0.0001; tpj: βregion ¼ 0.11, 95% CI [0.08,
0.14], t(23) ¼ 7.62, p < 0.0001; precuneus: βregion ¼ 0.05, 95% CI [0.03,
0.07], t(23) ¼ 5.08, p < 0.0001 – reported effects are in units of pro-
portion of low-frequency power (0.01–0.04Hz) relative to the entire PSD
frequency range (0.01–0.33Hz), all p values are Bonferroni corrected)
(Fig. 1b). Further, controlling for head motion, the child group exhibited
a similar pattern of neural dynamics compared to the adult group, such
that we detected a difference in the proportion of low-frequency power
between regions (F(3,90) ¼ 22.23, p < 0.0001) and the dmPFC, pre-
cuneus, and TPJ exhibited greater power compared to the auditory re-
gion (dmpfc: βregion ¼ 0.09, 95% CI [0.07,0.11], t(30) ¼ 8.49, p <

0.0001; tpj: βregion ¼ 0.07, 95% CI [0.05,0.09], t(30) ¼ 6.44, p < 0.0001;
precuneus: βregion ¼ 0.04, 95% CI [0.02,0.06], t(30) ¼ 3.84, p < 0.001)
(Fig. 1c). In comparing the low-frequency power between groups and
controlling for head motion, we found that the adult group exhibited
greater proportion of low-frequency power compared to the child group
in only the TPJ (tpj: βgroup ¼ 0.06, 95% CI [0.02,0.10], t(52) ¼ 2.85, p <

0.05; dmpfc: βgroup ¼ 0.03, 95% CI [0.00,0.06], t(52) ¼ 1.88, p ¼ 0.26;
precuneus: βgroup ¼ 0.03, 95% CI [0.00,0.06], t(52) ¼ 1.69, p ¼ 0.39;
auditory: βgroup ¼ 0.01, 95% CI [-0.01,0.04], t(52)¼ 1.23, p ¼ 0.89, all p
values are Bonferroni corrected) (Fig. 2). Finally, in the child group, we
examined the relationship between the proportion of low-frequency
power and child age. Controlling for head motion and repeated mea-
sures, we did not observe a main effect of child age on proportion of
low-frequency power (F(1,28) ¼ 1.23, p ¼ 0.28). We did observe a trend
within the dmPFC such that older children exhibit greater proportion of
low-frequency power, however this result did not survive the correction
for multiple comparisons (tpj: βage ¼ 0.00, 95% CI [-0.01,0.01], t(28) ¼
0.01, p¼ 1.00; dmpfc: βage ¼ 0.01, 95% CI [0.00,0.02], t(28)¼ 2.12, p¼
0.17; precuneus: βage¼ 0.01, 95% CI [-0.01,0.02], t(28)¼ 0.94, p¼ 1.00;
auditory: βage ¼ 0.00, 95% CI [-0.01,0.01], t(28) ¼ 0.35, p ¼ 1.00, all p
values are Bonferroni corrected) (Fig. 3). Notably, for the purposes of the
aforementioned analysis, we combined the left and right TPJ regions into
one region, however, our results remain consistent when examine the left
and right TPJ regions individuals (see Supplementary Fig. 7).
Fig. 2. Differences in low-frequency neu-
ral dynamics between child and adult
groups. The power spectrum density (PSD)
and proportion of low-frequency power are
presented for each group and region. The
adult group is shown in dark colors while the
child group is in lighter colors. The PSD
ribbons for each region depict the mean �
standard error. The black line denotes the
0.04 Hz cut-off used in the low-frequency
statistical analysis and the boxplots denote
the proportion of low-frequency power for
each region.



Fig. 3. Age-related differences in low-frequency power within children. For each region, we plot the relationship between the proportion of low-frequency power
and child age. A regression line is imposed onto the scatterplot with the shared areas denoting the 95% confidence interval on the beta estimate and colored by region.
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3.2. Children exhibit less neural synchrony for long timescales

To examine the influence of long timescales on within-group ISC, we
first constructed whole brain within-groupmodels for each condition and
group separately. Here the effect of interest was the intercept (i.e., group
ISC mean) while controlling for differences between episode and crossed
random effects. We found that both the Intact and Scrambled conditions
elicited statistically significant ISC in primary and secondary visual
cortices, superior temporal gyri, superior temporal sulci, inferior tem-
poral cortex, posterior and dorsal parietal areas in both the Adult and
Child groups (nodewise p< 0.01, cluster extent 112 mm2, FWE p< 0.05)
Fig. 4. Within-group inter-subject correlation. Within-group ISC maps for the adul
cluster extent of 112 mm2 to achieve a FWE of p < 0.05.
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(Fig. 4a and b, respectively).
We next investigated regions that exhibited a difference in ISC be-

tween the Intact and Scrambled conditions for each group separately. The
effect of interest for these models was condition (i.e., Intact and Scram-
bled) while controlling for episode and crossed random effects. Consis-
tent with previous studies (Hasson et al., 2008; Lerner et al., 2011; Chen
et al., 2016b), the Adult group exhibited greater ISC for the Intact
compared to the Scrambled condition within the bilateral temporopar-
ietal junction (TPJ), intraparietal sulci, supramarginal gyri, precuneus,
middle inferior temporal gyri, and dorsal medial prefrontal cortex
(dmPFC) (nodewise p < 0.01, cluster extent 112 mm2, FWE p < 0.05)
t (a) and child (b) groups. Maps are thresholded with a nodewise p < 0.01 with a



Fig. 5. Functional specialization for long timescales. Intact versus scrambled ISC contrasts were created for the adult (a) and child (b) groups. The difference
between the adult and child groups is shown in (c). In (a) and (b) hotter colors denote greater specialization for long timescale processing (e.g., intact-scrambled inter-
subject correlation values) whereas in (c) hotter colors denote greater long timescale processing in the adult group (e.g., the effect of group on the difference between
intact and scrambled). Whole brain maps are thresholded with a nodewise p < 0.01 with a cluster extent of 112 mm2 to achieve a FWE of p < 0.05. Each boxplot
depicts the ISC values extracted from each region, controlling for episode and crossed random effects and then averaged for each participant. p values over the boxplots
are Bonferroni corrected over the four ROI tests. *p < 0.05, **p < 0.01, ***p < 0.001.
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(Fig. 5a). We also found that regions in the extrastriate cortex and su-
perior temporal gyrus showed greater ISC in the Scrambled condition.
The adult whole-brain results were corroborated through our ROI ana-
lyses in which, controlling for episode and crossed random effects, we
detected significantly greater ISC during the intact episode within the
dmPFC (βcondition ¼ 0.029, 95% CI [0.021, 0.038], t(46) ¼ 4.74, p <

0.001), TPJ (βcondition ¼ 0.014, 95% CI [0.007, 0.021], t(46) ¼ 2.66, p <

0.05) and precuneus (βcondition ¼ 0.052, 95% CI [0.045, 0.060], t(46) ¼
9.57, p < 0.001). We also observed greater ISC in the scrambled
compared to the intact condition in the auditory ROI (βcondition¼�0.011,
95% CI [-0.015, �0.006], t(46) ¼ -3.39, p < 0.01). Further, the Child
group showed a qualitatively similar pattern compared to the Adult
group (Fig. 5b), however, in the ROI analyses we only observed greater
ISC in the intact condition within the precuneus (βcondition ¼ 0.017, 95%
8

CI [0.011, 0.023], t(60) ¼ 3.99, p < 0.001) and not the dmPFC (βcondition
¼ 0.003, 95% CI [-0.003, 0.010], t(60) ¼ 0.73, p ¼ 1.00) or TPJ
(βcondition ¼ 0.002, 95% CI [-0.003, 0.007], t(60) ¼ 0.58, p ¼ 1.00). We
also observed a similar trend of greater ISC during scrambled in the
auditory region in the child group (βcondition ¼ �0.010, 95% CI [-0.014,
�0.006], t(60) ¼ -3.61, p < 0.01). All p-values were corrected for the
four multiple comparisons of each ROI using a Bonferroni correction.

Finally, we examined which regions exhibited statistically greater
selectivity for long timescales in the Adult compared to the Child group.
Here all within-group ISC data for both groups were entered into the
model. The effect of interest was the group by condition interaction while
controlling for episode and crossed random effects. We found that the
bilateral TPJ, supramarginal gyri, dorsal lateral prefrontal cortex
(dlPFC), dorsal medial prefrontal cortex (dmPFC), inferior frontal gyri
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(iFG), precuneus, inferior temporal, and extrastriate cortices exhibited a
group by condition interaction such that the difference between the
Intact and Scrambled conditions was greater in the Adult compared to the
Child group (nodewise p < 0.01, cluster extent 112 mm2, FWE p < 0.05)
(Fig. 5c). In addition, we also observed statistically significant group by
condition interaction effects within the dmPFC (βinteraction ¼ 0.027, 95%
CI [0.016, 0.037], t(108) ¼ 3.54, p < 0.01) and precuneus (βinteraction ¼
0.034, 95% CI [0.025, 0.044], t(108)¼ 4.93, p< 0.001) ROIs but not the
auditory ROI (βinteraction¼ 0.000, 95% CI [-0.006, 0.006], t(108)¼ -0.06,
p ¼ 1.00). We observed a marginal interaction effect within the TPJ
(βinteraction ¼ 0.010, 95% CI [0.002, 0.019], t(108) ¼ 1.64, p ¼ 0.11)
which did not survive Bonferroni correction (p ¼ 0.42).

3.3. Long timescales are important for social-cognitive comprehension in
middle childhood

To examine the relationship between long timescale processing and
social-cognitive comprehension, we first ran a mixed-effects model that
used factors of condition (intact/scrambled), question type (mental/non-
mental) and a condition by type interaction to predict episode compre-
hension, while also controlling for age (in the case of the child group) and
episode. In the child group, we found a condition by question type
interaction, such that the difference between mental and non-mental
comprehension was greater in the scrambled compared to the intact
episode (β ¼ 13.1, 95% CI [0.04,22.0], t(90) ¼ 2.94, p < 0.01 – reported
effects are in units of percent change in comprehension) (Fig. 6a). Thus,
consistent with our predictions, having information presented at long
(compared to short) timescales was more important for mental state
compared to non-mental state comprehension in the child group. We also
detected a main effect of condition such that comprehension scores for
the scrambled episode were lower than the intact episode (β ¼ �19.5,
95% CI [-25.6,-13.1], t(89)¼ -6.20, p< 0.001). We did not detect a main
effect of question type (i.e., mental vs. non-mental), however numerically
participants scored better on the non-mental compared to the mental
questions (β ¼ 0.06, 95% CI [0.0,12.3], t(89) ¼ 1.92, p ¼ 0.06). In
addition, a main effect of age was also detected such that episode
comprehension increased as a function of child age (in months) (β ¼ 5.5,
95% CI [2.9,8.1], t(29)¼ 4.21, p< 0.001) (Fig. 6b). In contrast, the adult
group did not exhibit a condition by question type interaction (β ¼ 2.3,
95% CI [-7.3,12.0], t(68) ¼ 0.48, p ¼ 0.63). We detected a main effect of
condition such that comprehension scores for the scrambled episode
were lower than the intact episode (β ¼ �17.6, 95% CI [-24.4,-10.7],
t(68)¼ -5.10, p< 0.001). We also detected a main effect of question type
such that scores on the non-mental questions were higher than the
mental questions) (β ¼ 16.4, 95% CI [9.5,23.4], t(68) ¼ 4.76, p < 0.001)
(Fig. 6c).
Fig. 6. Episode comprehension. Comprehension is presented by question type (men
as a function of child age (b), and for the adult group (c). *p < 0.01, **p < 0.001.

9

3.4. Individual differences in neural maturity

We next examined how long timescale child-to-adult ISC varied as a
function of individual differences in child age and mental state
comprehension. Here our effect of interest was a covariate by condition
interaction such that, we expected the covariates to be positively related
to child-to-adult ISC within the intact episode more so than the scram-
bled episode. Controlling for episode and child head motion, we found
that child age predicted child-to-adult whole-brain ISC in the left TPJ,
right supramarginal gyrus, right precuneus, and bilateral extrastriate
regions more so in the intact compared to the scrambled episode
(nodewise p < 0.01, cluster extent 112 mm2, FWE p < 0.05) (Fig. 7a). In
the ROI analyses, we detected a statistically significant age by condition
interaction within the dmPFC (βinteraction¼ 0.004, 95% CI [0.002, 0.007],
t(106) ¼ 2.37, p < 0.05) and the precuneus (βinteraction ¼ 0.004, 95% CI
[0.002, 0.007], t(106) ¼ 2.41, p < 0.05), such that child-to-adult ISC
increased with age during the intact and not the scrambled episode, but
not the TPJ (βinteraction ¼ 0.000, 95% CI [-0.002, 0.003], t(106) ¼ 0.48, p
¼ 0.63), or the auditory regions (βinteraction ¼ 0.000, 95% CI [-0.001,
0.002], t(106) ¼ 0.80, p ¼ 0.43).

For comprehension, we used a composite to index mental state
comprehension beyond general comprehension (see Methods) as our
covariate. Controlling for episode, child head motion, and child age, we
found that mental state comprehension predicted child-to-adult ISC in
the right dmPFC more so in the intact compared to the scrambled
episode. Further, we found that child-to-adult ISC in the bilateral
extrastriate cortices as well as somatosensory cortex, inferior parietal
lobe, and secondary auditory cortices was related to general episode
comprehension (nodewise p < 0.01, cluster extent 112 mm2, FWE p <

0.05) (Fig. 7b). We show that these findings are likely not driven by
differences in head motion as there is no effect of head motion on the
mental state composite score (Supplementary Fig. 13). In the ROI ana-
lyses, we did not detect a statistically significant mental comprehension
by condition interaction in any of the four ROIs (dmPFC: βinteraction ¼
0.000, 95% CI [0.000, 0.001], t(106) ¼ 0.34, p ¼ 0.73; TPJ: βinteraction ¼
0.000, 95% CI [-0.001, 0.000], t(106) ¼ -0.93, p ¼ 0.36; precuneus:
βinteraction ¼ 0.000, 95% CI [-0.001, 0.002], t(106) ¼ -0.84, p ¼ 0.40,
auditory: βinteraction ¼ 0.000, 95% CI [-0.001, 0.000], t(106) ¼ -1.30, p ¼
0.20). See Supplementary Fig. 11 for unthresholded statistical maps.
While the aforementioned analyses focused on the effect of the mental
comprehension composite, we also present results from each compre-
hension type and episode condition in Supplementary Fig. 12.

4. Discussion

In this first study to address cortical temporal hierarchy in children,
we found evidence that children (6-13 year-old) exhibit less functional
tal and non-mental) and condition (intact and scrambled) for the child group (a),



Fig. 7. Child-to-adult ISC. The relationship between child-to-adult ISC and individual differences in child age (a) and mental state comprehension (b) were examined.
The whole-brain statistical maps reflect an interaction between condition (intact-scrambled) and the covariate. Scatterplots show the relationship between the co-
variate and each condition. *p < 0.05, corrected.
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specialization for long timescale processing compared to adults. Further,
within the TPJ – a key region for social cognition and long timescale
processing – children showed reduced power in low-frequency spectra
than adults. Behaviorally in the child group, we found that information
presented over longer timescales (i.e., the intact episode) leads to better
comprehension for mental state information than information presented
over relatively shorter timescales. Further, we found age-related differ-
ences in child-to-adult ISC within the dmPFC and precuneus and that
more ‘adult-like’ response in the dmPFC during long timescale processing
is related to better social-cognitive comprehension, suggesting a role of
this region in timescale processing specific to mental state comprehen-
sion. To our knowledge, this is the first study to examine developmental
differences in cortical temporal hierarchy and the role of long timescale
processing in social-cognitive processing in middle childhood.

Long timescale processing is thought to reflect the influence of in-
formation over multiple minutes or longer (Hasson et al. 2008, 2015).
Here we replicated previous low-frequency power and ISC findings
within the same participants, such that regions topographically similar to
the DMN (e.g., TPJ, precuneus, dmPFC) are implicated in long timescale
processing in adults both through manipulation of the temporal order of
videos and examination of the power spectral density during intact movie
viewing. While ISC was higher within long timescale regions for intact
than scrambled videos the reverse was seen for the control region of
auditory cortex. Auditory cortex is a short timescale region, generally
sensitive to stimuli on the order of seconds or slightly longer (e.g., words)
(Lerner et al., 2011). Thus, while this finding was not predicted it also
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does not run counter to our hypothesis that this region would not
demonstrate greater low-frequency power during intact conditions. Our
study is an extension of previous work (Hasson et al., 2008; Lerner et al.,
2011; Chen et al., 2016b), such that previous studies presented partici-
pants with the same content for each timescale condition, whereas we
presented participants with different content for the scrambled and intact
conditions. This enabled us to examine effects of scrambling on ISC and
comprehension without the confound of repeated content exposure be-
tween conditions.

While the child group showed a qualitatively similar pattern of re-
gions associated with long timescale processing as the adult group, we
found stronger and more focal neural synchrony in the adults compared
to children within the regions of the DMN (e.g., bilateral TPJ, precuneus,
dmPFC, iFG), and visual/attentional processing (e.g., supramarginal gyri,
extrastriate cortices) during the intact compared to the scrambled
episode. In addition, using ROIs defined from ameta-analysis of theory of
mind processing in adults, (Schurz et al., 2014), we found a similar
pattern of greater functional specialization for long timescales in adults
compared to the children within the TPJ, dmPFC, and precuneus.
Further, this finding of greater long timescale specialization in adults
compared to children was consistent with our finding of greater
low-frequency power in adults compared to children within the TPJ ROI.
Together, our results suggest that functional specialization of long
timescale processing during naturalistic viewing is immature in middle
childhood. This immaturity could reflect less distinction between the
intact and scrambled episodes at the group level or more idiosyncratic
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timescale processing that becomes more uniform with age. However,
given the fact that we also see group differences in low-frequency power,
idiosyncratic long timescale processing may be unlikely since the power
analysis is not affected by between-subject variability. These
between-group ISC findings in the current study are consistent with our
previous work that suggests greater neural synchrony within the DMN in
adults compared to children (Moraczewski et al., 2018).

In addition to examining group differences between children and
adults, we examined whether age-related differences were found within
middle childhood (i.e., 6–13 years) using a measure of child-to-adult
neural synchrony (using both whole-brain and ROI approaches) and
examination of age-related differences in low-frequency power within
the child group. In the whole-brain analyses, child-to-adult neural syn-
chrony during the intact episode increased as a function of child age
within the left TPJ, right supramarginal gyrus and precuneus, and
extrastriate cortices more so than during the scrambled condition. Some
discrepancies are seen comparing whole-brain to ROI analyses, however.
Only the precuneus showed a similar condition by age interaction in both
ROI and whole-brain analyses. Within the dmPFC ROI, we found a sig-
nificant condition by age interaction that was not seen in the whole-brain
statistical map. This discrepancy in dmPFC is likely due to the averaging
of nodes for the ROI analyses. Indeed, in the unthresholded map in
Supplementary Fig. 11, we see positive, but not statistically significant,
interactions within the bilateral dmPFC. Within the TPJ ROI, we did not
see a significant effect of age but we did see a significant effect in a left
TPJ cluster within the whole-brain analysis. This discrepancy is not due
simply to averaging the TPJ ROI because we did not see an effect in either
LTPJ or RTPJ ROIs independently (Supplementary Fig. 9a). What likely
does account for the discrepancy between the whole-brain and ROI TPJ
analyses is the different spatial locations of the TPJs. Our ROI in the TPJ
was defined based on a meta-analysis of theory of mind processing in
adults (Schurz et al., 2014). Given the functional heterogeneity within
the TPJ (Igelstr€om et al., 2015), one possibility is that the TPJ showing
whole-brain age by condition effects in the current study is not a region
associated with theory of mind processing. An alternate possibility is that
both regions are associatedwith theory of mind processes but do not both
demonstrate age-related changes. Several lines of data support this latter
interpretation. First, the peak effect within the left TPJ (MNI: �54, �57,
32) corresponds to associations of ‘theory of mind’, ‘mind’, and ‘default’
from the neurosynth meta-analysis (Yarkoni et al., 2011). Second, our
whole-brain peak LTPJ region is very similar to that found in a task-based
fMRI study directly probing age-related change in selectivity for mental
state reasoning in similar aged children (MNI: �48, �60, 30) (Gweon
et al., 2012) and is similar to the region that displayed age-related
changes in our previous study (Moraczewski et al., 2018). Finally, the
TPJ ROI did not show age-related change in low-frequency power within
the child group. Thus, the LTPJ identified in the whole-brain may be a
region that changes with age in middle childhood but the LTPJ region
identified in the Schurz et al., meta-analysis does not. Future work could
include functional localizers to better define functional subregions of the
TPJ to examine how those are related to the development of long time-
scale processing.

An immature cortical temporal hierarchy in children compared to
adults could have important implications for the development of neural
and cognitive systems. Temporal hierarchy in the cortex is organized
from short to long temporal receptive windows (TRWs) (Hasson et al.,
2008), which is also thought to reflect a region’s location along a
unimodal to transmodal gradient, respectively (Margulies et al., 2016;
Huntenburg et al., 2018). Longer timescale processing may reflect
recurrent connections between higher-order association cortices (e.g.,
DMN) that enable the ability to integrate newly arriving information
while also maintaining an internal working model of one’s environment
and cognitive state (Honey et al., 2012; Chaudhuri et al., 2015; D�eli et al.,
2017). Given the immaturity of the DMN during middle childhood (Fair
et al., 2009; Supekar et al., 2010; de Bie et al., 2012; Muetzel et al., 2016),
perhaps the development of long timescale processing reflects the
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refinement of these cortical gradients; however the current study cannot
address these hypotheses. Future work should examine the develop-
mental relationship between temporal hierarchy and cortical gradients at
multiple scales and how cognitive abilities are affected by this system’s
maturation. Further, one important caveat of the current study is that we
did not record physiological measurements in the scanner (e.g., heartbeat
and respiration). Previous work suggests that such measures have
important and regionally-specific (e.g., TPJ) implications on the BOLD
signal and future work examining developmental differences in timescale
processing should address this limitation (Birn et al., 2006; Wu and
Marinazzo, 2016).

This study was the first to examine whether long timescale processing
is related to social cognition. We found that children’s social-cognitive
performance was dependent on information presented over longer
timescales; whereas general memory was not affected by timescales to
the same extent. Previous work shows that one’s ability to maintain
context (e.g., holding onto information during a task) is specifically
important for theory of mind abilities in terms of perceiving one’s social
status (Rizzo and Killen, 2018), planning moves during chess (Powell
et al., 2017), and ingroup versus outgroup dynamics (Mulvey et al.,
2016). Further, theory of mind is a complex ability that involves the
coordination of multiple skills (e.g., face recognition, emotion process-
ing, predicting behavior) (Schaafsma et al., 2015), many of which
operate on diverse timescales. Thus, longer timescales may be needed to
track, accumulate, and refine an accurate representation of mental states
(D�eli et al., 2017), which is essential to one’s ability to predict the social
environment (Koster-Hale and Saxe, 2013). It is important to note that it
is not possible to disentangle whether the integration of information over
long timescales is a domain-general neural property that affects social
cognition or whether disruption to a social narrative causes information
about a character’s mental states or actions to be lost and thus impairs
social-cognitive performance. We argue that these are two sides of the
same coin. The fact that many social-cognitive judgments require inte-
gration of prior information about another person suggests that the
neural machinery supporting these computations must be able to operate
over a long temporal receptive window (Redcay and Moraczewski,
2019).

While long timescales were important for children’s social-cognitive
performance, we did not detect a significant interaction effect between
condition and question type in the adult group. Similar to the child
group, mental comprehension was greater in the intact compared to
scrambled episode; however, unlike the child group, comprehension on
the non-mental questions was also affected by timescale. Specifically, the
non-mental comprehension from the intact episode was higher than any
other condition. Because our choice of stimuli (children’s show) and
comprehension questions were designed to test comprehension in middle
childhood specifically, the questions may have been too simple to
disentangle the effects of long timescale on comprehension in adults. An
alternate possibility is that presentation of information over long time-
scales is equally beneficial for social-cognitive and general memory in
adults. The unique advantage of long timescales to social-cognitive
comprehension in childhood may be most important for a developing
social-cognitive system. Future work should examine interactions be-
tween question type and timescales in adults to address these possibil-
ities. Further, given that questions were created based on an existing
video, the stimuli were not perfectly matched on language and memory
demands. A more precise matching between mental and nonmental
comprehension questions (e.g., matching on social/nonsocial features
and number of agents/actions) will be important for directly comparing
effects between mental and non-mental questions.

To examine how ISC over long timescales is related to social-cognitive
comprehension, we tested for correlation between child-to-adult ISC and
social-cognitive comprehension (while controlling for overall compre-
hension) in the intact compared to scrambled conditions. Here we found
that child-to-adult ISC for the long timescale condition increased in the
right dmPFC as a function of mental state comprehension beyond general
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comprehension. We post-hoc examined unthresholded maps relating
child-to-adult ISC in intact and scrambled conditions to mental and
nonmental comprehension in order to better understand these effects.
When examining these patterns it appears that this effect is driven by
differences in the correlation between mental state comprehension and
child-to-adult ISC in the intact compared to scrambled conditions, with a
slight positive correlation in intact and negative correlation in scrambled
conditions. The dmPFC is associated with social-cognitive abilities
(Schurz et al., 2014), specifically the representation of socially-relevant
information (e.g., personality traits) during task (Saxe and Powell,
2006), spontaneous mentalizing (Castelli et al., 2000; Moessnang et al.,
2016), viewing social interactions (Wagner et al., 2016), as well as long
timescale processing (Lerner et al., 2011; Chen et al., 2016b). Previous
work posits that response in this region is crucial for the ability to build
individual representations of the history and personality traits of others
(Mitchell et al., 2006), which facilitates one’s ability to predict what a
social partner may do next (Koster-Hale and Saxe, 2013). Thus, we
speculate that successful performance on the mental state questions
(compared to the non-mental questions) in the current study requires an
accurate representation of each individual character. Further, the fact
that the correlation between child-to-adult ISC and mental state
comprehension was stronger during the intact compared to the scram-
bled episode suggests the importance of building the representations of
others across time in this region. However, the correlation between
mental state comprehension and child-to-adult ISC in the dmPFC was
only observed in the whole-brain, but not the ROI, analysis. The ROI
defined from a meta-analysis (Schurz et al., 2014) was centered on the
left dmPFC, while the significant cluster in the whole-brain analysis was
seen in the right hemisphere. While the left and right dmPFC are spatially
proximal within 3D space, the bifurcation into left and right surfaces may
have contributed to this discrepancy. Post-hoc examination in neuro-
synth (Yarkoni et al., 2011) of the peak coordinate within the right
dmPFC cluster exhibiting the mental state comprehension by condition
interaction (MNI: 11, 43, 33) suggest functional association terms of
‘mind tom’, ‘tom’, and ‘default network’, which provides further evi-
dence of mental state processing within his region. However, future work
should utilize a social-cognitive localizer to examine individual differ-
ences in mental state representation during naturalistic viewing.

In addition to a positive correlation in the dmPFC between social-
cognitive comprehension and child-to-adult ISC, we saw an unexpected
negative correlation between child-to-adult ISC and the social-cognitive
ratio comprehension score within clusters comprising ventral visual
cortex, somatosensory cortex, and inferior parietal lobe. These are re-
gions primarily comprising short and medium timescales (Lerner et al.,
2011; Chen et al., 2016b). From examining the maps by condition and
comprehension type it appears that this effect is largely driven by the
difference in correlation between nonmental comprehension with the
intact videos (positive) and with the scrambled videos (negative). This
effect was not predicted and requires further study to understand why
these regions, which are not typically associated with long timescales,
would show a stronger behavioral correlation to intact compared to
scrambled child-to-adult ISC. However, the stronger correlation to
nonmental comprehension within ventral visual, somatosensory, and
inferior parietal regions is broadly consistent with research demon-
strating greater activation of these regions when participants make
judgments about physical, nonmental characteristics of a person, like
bodily sensations (Jacoby et al., 2016). Future work is needed to clarify
whether these processes similarly show greater disruption by long
timescale processing as our current behavioral data in children do not
support that claim.

5. Conclusions

Our study is the first to investigate developmental differences in
cortical temporal hierarchy, as well as the relationship between long
timescale processing and social-cognitive abilities in middle childhood.
12
We found that children exhibit immature long timescale processing
within regions of the DMN. Further, during this age long timescales are
more important for social-cognitive abilities beyond general memory.
Finally, our data suggests that the dmPFC is important in the develop-
ment of theory of mind, specifically in the representation of information
about individuals over time.
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